TRIDONIC

TALEX(module QLE G2 380x380mm 5000lm ADV-SE

TALEX(module QLE

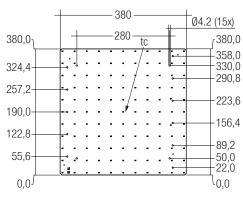
Product description

- Ideal for panel and louvre luminaires,
 cost-effective replacement for 4 x 14 W (18 W) T5 / T8 lamps
- Luminous flux range from 3,520 up to 8,260 lm
- 121 LED packages for excellent homogeneity and illuminiation
- LED system solution with outstanding system efficacy up to 136 lm/W, consisting of squared LED modules and dimmable LED Driver LCAI 65 W 900 – 1750 mA ECO lp
- Efficacy of the module up to 159 lm/W
- \bullet High colour rendering index CRI > 80
- Small colour tolerance MacAdam 3[®]
- Small luminous flux tolerances
- Colour temperatures 3,000 K and 4,000 K
- Self cooling (no additional heat sink required)
- Push terminals for quick and simple wiring of LED module to LED module
- Simple installation (e.g. screws)
- Long life-time: 50,000 hours
- 5-year guarantee

Standards, page 3

Colour temperatures and tolerances, page 6

TRIDONIC



TALEX(module QLE G2 380x380mm 5000lm ADV-SE

TALEX/module QLE

Technical data

Beam characteristic	120°
Ambient temperature range	-30 +45 °C
tp rated	65 °C
tc	85 °C
Max. DC forward current	1,980 mA
Max. permissible LF current ripple	2,178 mA
Max. permissible peak current	2,460 mA / max. 10 ms
Max. permissible output voltage of LED Driver [®]	420 V
Insulation test voltage	1.84 kV
ESD classification	severity level 4
Risk group (EN 62471:2008)	0
Type of protection	IP00

Ordering data

Туре	Article numbe	Colour	Packaging	Weight per
type	Article numbe	temperature	carton	pc.
QLE G2 380x380mm 5000lm 830 ADV-SE	89602156	3,000 K	14 pc(s).	0.283 kg
QLE G2 380x380mm 5000lm 840 ADV-SE	89602157	4,000 K	14 pc(s).	0.283 kg

Specific technical data

opoonio tooninoai aata											
Type [⊕]	Photo-	Typ.	Тур.	Тур.	Min. forward	Max. forward	Typ. power	Efficacy	Efficacy	Efficacy	Colour
	metric	luminous flux	luminous flux	forward	voltage at	voltage at	consumption at	of the module	of the module	of the system	rendering
	code	at tp = 25 $^{\circ}$ C $^{\circ}$	at tp = 45 $^{\circ}\text{C}^{\tiny{\textcircled{3}}}$	current	tp = 45 °C	tp = 25 °C	tp = 45 °C®	at tp = 25 °C	at tp = 45 °C	at tp = 45 °C	index CRI
Operating mode HE at 825 mA											
QLE G2 380x380mm 5000lm 830 ADV-SE	830/349	3,920 lm	3,720 lm	825 mA	30.5 V	34.7 V	26.0 W	146 lm/W	143 lm/W	126 lm/W	> 80
QLE G2 380x380mm 5000lm 840 ADV-SE	840/349	4,270 lm	4,050 lm	825 mA	30.5 V	34.7 V	26.0 W	159 lm/W	155 lm/W	136 lm/W	> 80
Operating mode BLO at 1,050 mA											
QLE G2 380x380mm 5000lm 830 ADV-SE	830/349	4,850 lm	4,600 lm	1,050 mA	31.8 V	36.2 V	34.1 W	138 lm/W	135 lm/W	119 lm/W	> 80
QLE G2 380x380mm 5000lm 840 ADV-SE	840/349	5,290 lm	5,020 lm	1,050 mA	31.8 V	36.2 V	34.1 W	151 lm/W	147 lm/W	130 lm/W	> 80
Operating mode HO at 1,700 mA											
QLE G2 380x380mm 5000lm 830 ADV-SE	830/349	7,580 lm	7,190 lm	1,700 mA	34.0 V	38.8 V	59.1 W	125 lm/W	121 lm/W	106 lm/W	> 80
QLE G2 380x380mm 5000lm 840 ADV-SE	840/349	8,260 lm	7,840 lm	1,700 mA	34.0 V	38.8 V	59.1 W	136 lm/W	132 lm/W	116 lm/W	> 80

① Integral measurement over the complete module.

² If mounted with M4 screws and plastic washers.

 $^{^{\}circledR}$ Tolerance range for optical and electrical data: ± 10 %.

 $^{^{\}tiny \textcircled{4}}$ HE ... high efficiency, BLO ... best lamp operation, HO ... high output.

1. Standards

IEC 62031

IEC 62471

IEC 61547

IEC 55015

IEC 61000-4-2

1.1 Photometric code

Key for photometric code, e. g. 830 / 449

1s	t digit	2 nd + 3 rd digit	4 th digit	5 th digit	6	th digit
					Luminous flux	after 25%
Code	CRI			McAdam after	of the life-tim	e (max.6000h)
		Colour temperature in	McAdam	25% of the	Code	Luminous flux
7	70 – 79	Kelvin x 100	initial	life-time	7	≥ 70 %
8	80 - 89			(max.6000h)	8	≥ 80 %
9	≥90				9	≥ 90 %

1.2 Energy classification

Туре	Forward current	Energy classification
	825 mA	A++
QLE G2 380x380mm 5000lm 830 ADV-SE	1.050 mA	A++
_	1.700 mA	A+
	825 mA	A++
QLE G2 380x380mm 5000lm 830 ADV-SE	1.050 mA	A++
_	1.700 mA	A+

2. Thermical details

2.1 tp point, ambient temperature and life-time

The temperature at tp reference point is crucial for the light output and life-time of a TALEX product.

For TALEX(module QLE a tp temperature of 65 °C has to be complied in order to achieve an optimum between light output and life-time.

Compliance with the maximum permissible reference temperature at the tp point must be checked under operating conditions in a thermally stable state. The maximum value must be determined under worst-case conditions for the relevant application.

The tc and tp temperature of LED modules from Tridonic are measured at the same reference point.

2.2 Storage and humidity

Storage temperature	-30 +80 °C
Storage temperature	-30+00 6

Operation only in non condensing environment. Humidity during processing of the module should be between 0 to 70 %.

2.3 Thermal design and heat sink

The rated life of TALEX products depends to a large extent on the temperature. If the permissible temperature limits are exceeded, the life of the TALEX(module QLE will be greatly reduced or the TALEX(module QLE may be destroyed.

2.4 Heat sink values

ta	tp	Forward current	R th, hs-a	Cooling area
25 °C	65 °C	825 mA	3.12 K/W	214 cm ²
25 °C	65 °C	1,050 mA	2.05 K/W	325 cm ²
25 °C	65 °C	1,700 mA	1.15 K/W	579 cm ²
35 °C	65 °C	825 mA	2.34 K/W	285 cm ²
35 °C	65 °C	1,050 mA	1.59 K/W	420 cm ²
35 °C	65 °C	1,700 mA	0.91 K/W	736 cm ²
45 °C	65 °C	825 mA	1.57 K/W	425 cm ²
45 °C	65 °C	1,050 mA	1.06 K/W	629 cm ²
45 °C	65 °C	1,700 mA	0.61 K/W	1,097 cm ²

Notes

The actual cooling surface can differ because of the material, the structural shape, outside influences and the installation situation. Depending on the heat sink a heat conducting paste or heat conducting film might be necessary to keep the specified tp temperature.

3. Installation / wiring

3.1 Electrical supply/choice of LED Driver

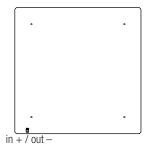
TALEX(module QLE from Tridonic are not protected against overvoltages, overcurrents, overloads or short-circuit currents. Safe and reliable operation can only be guaranteed in conjunction with a LED Driver which complies with the relevant standards. The use of TALEX(converter from Tridonic in combination with TALEX(module QLE guarantees the necessary protection for safe and reliable operation).

If a LED Driver other than Tridonic TALEX(converter is used, it must provide the following protection:

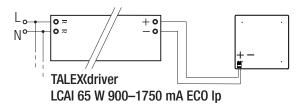
- Short-circuit protection
- Overload protection
- Overtemperature protection

TALEX/module QLE must be supplied by a constant current LED Driver. Operation with a constant voltage LED Driver will lead to an irreversible damage of the module.

Wrong polarity can damage the TALEX/module QLE.

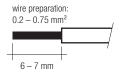

With parallel wiring tolerance-related differences in output are possible (thermal stress of the module) and can cause differences in brightness. If one module fails, the remaining modules may be overloaded.

TALEX/module QLE can be operated either from SELV LED Drivers or from LED Drivers with LV output voltage.



TALEX(module QLE are basic isolated up to 420 V against ground and can be mounted directly on earthed metal parts of the luminaire. If the max. output voltage of the LED Driver (also against earth) is above 420 V, an additional isolation between LED module and heat sink is required (for example by isolated thermal pads) or by a suitable luminaire construction. At voltages > 60 V an additional protection against direct touch (test finger) to the light emitting side of the module has to be guaranteed. This is typically achieved by means of a non removable light distributor over the module.

3.2 Wiring



Wiring examples

3.3 Wiring type and cross section

The wiring can be solid cable with a cross section of 0.2 to 0.75 mm². For the pushwire connection you have to strip the insulation (6–7 mm).

Inserting stranded wires / removing wires by lightly pressing on the push button.

3.4 Mounting instruction

None of the components of the TALEX/module STARK QLE (substrate, LED, electronic components etc.) may be exposed to tensile or compressive stresses.

Max. torque for fixing: $0.5\,\mbox{Nm}.$

The LED modules are mounted with 4 screws per module. In order not to damage the modules only rounded head screws and an additional plastic flat washer should be used.

Chemical substance may harm the LED module. Chemical reactions could lead to colour shift, reduced luminous flux or a total failure of the module caused by corrosion of electrical connections.

Materials which are used in LED applications (e.g. sealings, adhesives) must not produce dissolver gas. They must not be condensation curing based, acetate curing based or contain sulfur, chlorine or phthalate. Avoid corrosive atmosphere during usage and storage.

3.5 EOS/ESD safety guidelines

The device / module contains components that are sensitive to electrostatic discharge and may only be installed in the factory and on site if appropriate EOS/ESD protection measures have been taken. No special measures need be taken for devices/modules with enclosed casings (contact with the pc board not possible), just normal installation practice. Please note the requirements set out in the document EOS / ESD guidelines (Guideline_EOS_ESD.pdf) at: http://www.tridonic.com/esd-protection

4. Life-time

4.1 Life-time, lumen maintenance and failure rate

The light output of an LED Module decreases over the life-time, this is characterized with the L value.

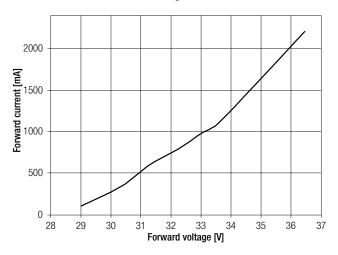
L70 means that the LED module will give 70 % of its initial luminous flux. This value is always related to the number of operation hours and therefore defines the lifetime of an LED module.

As the L value is a statistical value and the lumen maintenace may vary over the delivered LED modules.

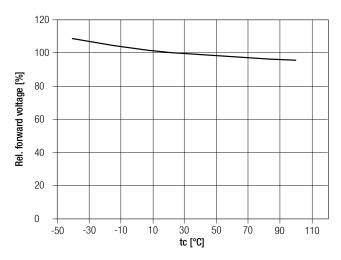
The B value defines the amount of modules which are below the specific L value, e.g. L70B10 means 10 % of the LED modules are below 70 % of the initial luminous flux, respectively 90 % will be above 70 % of the initial value. In addition the percentage of failed modules (fatal failure) is characterized by the C value.

The F value is the combination of the B and C value. That means for F degradation and complete failures are considered, e.g. L70F10 means 10 % of the LED modules may fail or be below 70 % of the initial luminous flux.

Life-time declarations are informative and represent no warranty claim.


4.2 Lumen maintenance

Inserting stranded wires / removing wires by lightly pressing on the push button.


Forward current	tp temperature	L90 / F10	L90 / F50	L80 / F10	L80 / F50	L70 / F10	L70 / F50
	45 °C	50,000 h					
825 mA	55 °C	50,000 h					
OZU IIIA	65 °C	33,000 h	50,000 h				
	75 °C	17,000 h	40,000 h	33,000 h	50,000 h	50,000 h	50,000 h
1,050 mA	45 °C	50,000 h					
	55 °C	40,000 h	50,000 h				
	65 °C	22,000 h	50,000 h	41,000 h	50,000 h	50,000 h	50,000 h
	75 °C	11,000 h	35,000 h	22,000 h	48,000 h	34,000 h	50,000 h
	45 °C	26,000 h	50,000 h	48,000 h	50,000 h	50,000 h	50,000 h
1,700 mA	55 °C	12,000 h	31,000 h	26,000 h	50,000 h	38,000 h	50,000 h
	65 °C	8,000 h	15,000 h	14,000 h	31,000 h	22,000 h	50,000 h
	75 °C	4,000 h	9,000 h	8,000 h	18,000 h	13,000 h	30,000 h

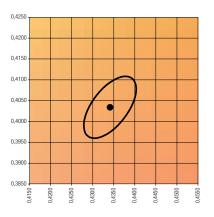
5. Electrical values

5.1 Forward current vs. forward voltage

5.2 Forward voltage vs. tc temperature

6. Photometric charcteristics

6.1 Coordinates and tolerances according to CIE 1931

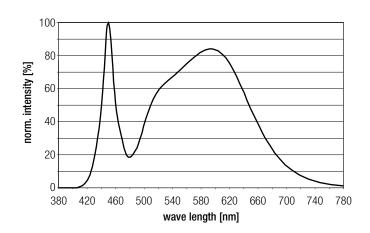

The specified colour coordinates are measured integral by a current impulse with typical values of module and a duration of 100 ms.

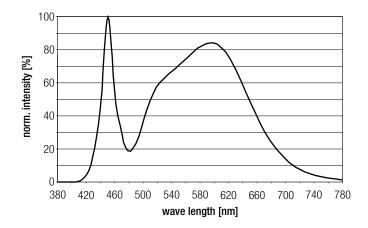
The ambient temperature of the measurement is ta = 25 °C.

The measurement tolerance of the colour coordinates are \pm 0.01.

3,000 K

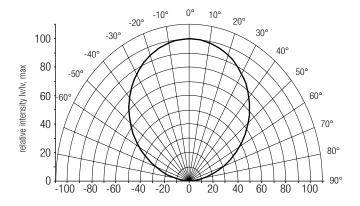
	х0	y0
Centre	0.4344	0.4032




MacAdam Ellipse: 3SDCM

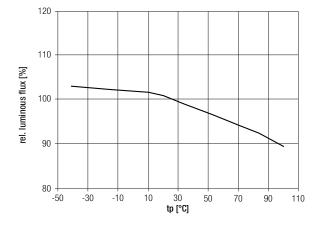
4,000 K

	XU	yU
Centre	0.3828	0.3803
0,4000		
0,3950		
0,3900		
0,3850		
0,3800		
0,3750		
0,3700		

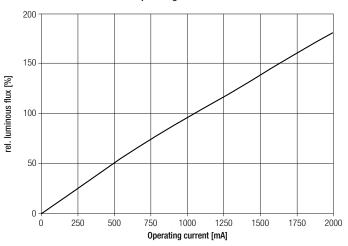

MacAdam Ellipse: 3SDCM

6.2 Light distribution

The optical design of the TALEX/module QLE product line ensures optimum homogenity for the light distribution.



The colour temperature is measured over the complete module. The single LED light points can be outside of 3SDCM.


To ensure an ideal mixture of colours and a homogenious light distribution a suitable optic (e. g. PMMA diffuser) and a sufficient spacing between module and optic (typ. $5\ cm$) should be used.

3D-Data, photometric data and Design-in guide available on request or go to www.tridonic.com

6.3 Relative luminous flux vs. tp temperature

6.4 Relative luminous flux vs. operating current

The diagrams based on statistic values. The real values can be different.